Lilac Alcohol-a and -b, New Naturally Occurring Odorous Ingredients

Seiji Wakayama and Satoshi Namba

Chemical Laboratory, Hokkaido University of Education, Sapporo

and Masaji Ohno

Basic Research Laboratory, Toray Industries, Inc., Kamakura

(Received June 16, 1970)

No constituents of lilac flower oil, Syringa vulgaris L. are known.¹⁾ We could isolate and identify eighteen constituents from the oil obtained by steam distillation of the concrete (n-hexane extract of flowers). The main components which amount to 70 per cent of the oil have been found to be four new stereoisomeric terpene alcohols named lilac alcohol-a, -b, -c, and -d. They have the most exquisite floral fragrance. Lilac alcohol-a and -b have been assigned to the diastereomers of (2R, 5R)- β ,5-dimethyl-5-vinyl-2-tetrahydrofuranethanol (I).

Lilac alcohol-a $[\alpha]_D^{25} + 15.5^{\circ}$ (c = 0.515 in CHCl₃) and -b, $[\alpha]_D^{25}$ -2° (c=0.535 in CHCl₃) have the same molecular formula $C_{10}H_{18}O_2$ (M+, 170). The close similarity of their spectroscopic evidence such as IR, NMR and MS suggests that they are stereoisomers. The IR spectra show the presence of hydroxy (3520 cm⁻¹) and vinyl group (1640, 990, 920 cm⁻¹), and ether linkage (1015 cm^{-1}) . The hydroxyl function has been shown to be primary by a prominent peak at m/e 31 (C+H₂OH), and the presence of tetrahydrofuran ring has been shown by the characteristic α-fission of α-substituted tetrahydrofuran derivatives²⁾ (m/e, 155 (M- $CH_3)^+$; 143 $[M-(-CH-CH_2)]^+$; 111 $[M-(-CH-CH_2)]^+$ Me-CH₂OH)]+; 43 CH₃+C=O). The NMR spectra (Table 1) of lilac alcohol-a and -b are reasonably consistent with the proposed structure (I).

A clear proof of the structure has been achieved by the transformation of lilac alcohols and *trans*linalool oxide^{3,4)} (II) into the same derivative as

Table 1. NMR spectral data $(\delta \text{ in ppm, in CDCl}_3)^*$

	a	b
	$_{J=6.0}^{0.94\mathrm{d}}$	$_{J=6.0}^{0.80\mathrm{d}}$
	1.31 s	1.30 s
	1.82m	1.80m
	3.66 (ABX)	$3.62 (A_2X)$
	4.12m	3.80m
$\mathbf{H_2}$	5.17	5.01 5.19 5.89
	$\mathbf{H_2}$	0.94 d J=6.0 1.31 s 1.82 m 3.66 (ABX)

^{*} The signals of alcohols appear at $2.96-2.60 \delta$, depending on the concentration, and typical signals of a vinyl group are observed with $J_{1,2}=1.6 \text{ Hz}$, $J_{1,3}=8.0 \text{ Hz}$ and $J_{2,3}=18 \text{ Hz}$.

shown below. Hydrogenation of II over Pt followed by acetylation and pyrolysis afforded 5-ethyl-2-isopropenyl-5-methyl-tetrahydrofuran (III), which gave a mixture of diastereomers of 5-ethyl- β ,5-dimethyl-2-tetrahydrofuranethanol (IV) by hydroboration. Dihydrolilac alcohol-a and -b obtained by catalytic hydrogenation of I were confirmed to be identical with one diastereomer (Rt, 12.6 min) and another (Rt, 9.8 min) respectively.

¹⁾ E. Guenther, "The Essential Oils," Vol. V, D. Nostrand Company, New York (1952), p. 338; E. Gildemeister, "Die Aetherischen Oele," B. VI, Akademie-Verlag, Berlin (1961), p. 554; W. A. Poucher, "Perfume, Cosmetics and Soaps," Vol. 1, Chapman and Hall Ltd., London (1959), p. 151.

²⁾ H. Budzikiewicz, C. Djerassi and D. H. Williams, "Structure Elucidation of Natural Products by Mass Spectrometry," Vol II, Holden-Day, Inc., San Francisco (1964), p. 270.

³⁾ D. Felix, A. Melera, J. Seibe and E. sz. Kovats, Helv. Chim. Acta, 46, 1513 (1963); ibid., 47, 918 (1964).

⁴⁾ E. Klein, H. Farnow and W. Rojahn, Ann. Chem., 675, 73 (1964).